Degeneration of retinal ganglion cells in diabetic dogs and mice: Relationship to glycemic control and retinal capillary degeneration
نویسندگان
چکیده
PURPOSE The purpose of this study was to investigate (i) the effect of diabetes on retinal ganglion cell death in diabetic dogs and mice, (ii) the effect of prolonged glycemic control on diabetes-induced death of retinal ganglion cells, (iii) whether retinal ganglion cell death in diabetes is associated with degeneration of retinal capillaries, and (iv) the effect of diet on diabetes-induced degeneration of retinal ganglion cells in mice. METHODS Diabetes was induced in dogs using streptozotocin, and levels of glycemic control (good, moderate, and poor) were maintained for 5 years. Diabetes was studied in two mouse models (diabetes induced in C57Bl/6J mice using streptozotocin and spontaneously diabetic Ins2Akita mice). Retinal ganglion cell death was investigated by counting the number of axons from the ganglion cells in the optic nerve and with terminal transferase deoxyuridine triphosphate nick-end labeling and annexin V staining in mice. RESULTS As reported previously, the development and severity of vascular lesions of diabetic retinopathy in diabetic dogs were strongly associated with glycemic control. Loss of retinal ganglion cells was extensive in dogs kept in poor glycemic control, and was essentially prevented in diabetic dogs kept in good glycemic control for the 5 years of study. In contrast, "moderate" glycemic control (intermediate between poor and good glycemic control) caused a significant increase in vascular pathology, but did not cause loss of retinal axons in the optic nerve. Using this validated optic nerve axon counting method, the two mouse models of diabetic retinopathy were studied to assess ganglion cell death. Despite 10 months of diabetes (a duration that has been shown to cause retinal capillary degeneration in both models), neither mouse model showed loss of optic nerve axons (thus suggesting no loss of retinal ganglion cells). Likewise, other parameters of cell death (terminal transferase deoxyuridine triphosphate nick-end labeling and annexin V labeling) did not suggest ganglion cell death in diabetic C57Bl/6J mice, and ganglion cell death was not increased by a different commercial diet. CONCLUSIONS Retinal ganglion cell death in diabetic dogs is significantly inhibited by good or even moderate glycemic control. The finding that diabetic dogs in moderate glycemic control had appreciable vascular disease without apparent retinal ganglion cell degeneration does not support the postulate that neural degeneration causes the vascular pathology. Studies of diabetic mice in our colony again fail to find evidence of ganglion cell death due to prolonged diabetes in this species.
منابع مشابه
Cell based therapies in retinal diseases
Background Degenerative retinal diseases, including age related macular degeneration, glaucoma, and hereditary retinal dystrophies are major causes of blindness. The principal defect in these diseases is cell loss which is amenable to both cell based neuroprotective and neuroregenerative therapies. To briefly review the lines of research and potential candidates for cell based therapies among ...
متن کاملRetinal ischemia and reperfusion causes capillary degeneration: similarities to diabetes.
PURPOSE Retinal neurons and vasculature interact with each other under normal conditions, and occlusion of the retinal vasculature can result in damage to retinal neurons. Whether damage to the neural retina will damage the vasculature, however, is less clear. This study was conducted to explore the relationship between vascular and nonvascular cells of the retina. The response of the retinal v...
متن کاملPhotoreceptor Cells Influence Retinal Vascular Degeneration in Mouse Models of Retinal Degeneration and Diabetes
PURPOSE Loss of photoreceptor cells is associated with retinal vascular degeneration in retinitis pigmentosa, whereas the presence of photoreceptor cells is implicated in vascular degeneration in diabetic retinopathy. To investigate how both the absence and presence of photoreceptors could damage the retinal vasculature, we compared two mouse models of photoreceptor degeneration (opsin-/- and R...
متن کاملP129: Use of Stem Cells to Regenerate Degenerative Optic Nerve
Stem cells are undifferentiated cells that have the ability to convert to different types of cells and after dividing, they can produce their own cells or other cells. Axons of the retinal ganglion cells, from the optic nerve. These cells lose the ability to regenerate themselves before birth. Optic nerve degeneration can result from various causes including increased intraocular pressure, comp...
متن کاملEffect of nafamostat on N-methyl-D-aspartate-induced retinal neuronal and capillary degeneration in rats.
We examined the effects of the serine protease inhibitor nafamostat mesilate on neuronal and vascular injury in rat retinas treated with N-methyl-D-aspartate (NMDA). The degree of neuronal degeneration was assessed by measuring the number of cells in the ganglion cell layer and the thickness of the inner plexiform layer. The degree of capillary degeneration was assessed by measuring the number ...
متن کامل